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COLLISION EFFICIENCY OF NEARLY EQUAL CLOUD DROPS 
M. NEIBURGER 

Deparfmenf of Mefeorology, Universify of California a t  Los Angeles 

ABSTRACT 

Recomputation of the  collision efficiency of nearly equal water drops falling in air gave values which increase 
as the size ratio approaches uiiity for radii of the bigger drop larger than 6 3  p, and decreased as though tending toward 
zero for smaller radii. For the bigger radii the new computcd values are consistent with experimental results, but for 
radii around 40 ,U they are not. 

1. INTRODUCTION 
The values of collision efficiency of pairs of spheres 

falling in a viscous medium computed by Shafrir and 
Neiburger [5,  61 agree fairly well with values obtained 
experimentally for unequal but similarly sized spheres 
(Neiburger and Pruppacher [2], Neiburger [l]) . However, 
for nearly equal spheres the original computations in- 
dicated zero efficiency, whereas the experiments of Telford 
et al. [a], for 77-p radius water drops falling in air, had 
given a value not merely non-zero but considerably larger 
than the geometric value, and recently Woods [9] and 
Woods and Mason [IO] carried out experiments which also 
gave non-zero values for equal drops with radii in the 
range 35 to 95 p.  

This discrepancy between computed and experimental 
values for nearly equal drops was attributed in part to 
the fact that the computations were carried out with large 
initial separations of the drops (100 radii) while in the 
experiments they were initially much closer together. At  
large separations the terminal velocities of nearly equal 
drops mould be nearly the same. The velocity of the upper 
drop relative to the lower one would be very small and 
the time to overtake correspondingly long. During the 
many time steps required in the machine computation in 
this case computational error could accumulate and be 
responsible for the inconsistency betn-een the computations 
and the experiments. 

On the other hand this long period of overtake might 
provide a physical reason to expect the collision efficiency 
to be zero. The deflection of the lower sphere out of the 
path of the upper is caused by the viscous drag on the 
former by the fluid passing around the latter. When the 
period of overtake is long the drag force has plenty of 
time to act to carry the lower drop out of the path of the 
upper. However the flon- around the lower sphere exerts i~ 

similar drag on the upper drop, deflecting i t  in the same 
direction. If the deflection of the lower drop is greater 
the collision efficiently will be small or zero. If the de- 
flection of the upper drop is greater the efficiency may be 
greater than the geometric. Pearcey and Hill [3] considered 

that for large drops (Reynolds number Re 2 1) the asym- 
metry of the flow, with the upper of two nearly equal 
drops acted on by the wake of the lower, would lead to 
larger deflection of the upper drop and large collision 
efficiencies, in accord with the results of their computa- 
tions. When our computations gave opposite results we 
judged that they had overestimated the wake effect, a 
conclusion fortified by evidence that they had made nn 
error in computing the flow field (Shafrir [4]). 

In  addition to the possibility of accumulation of com- 
putational error, the computation involved assumptions 
and simplifications which might lead to erroneous results. 
I t  \vas interesting, therefore, to see whether more refined 
computational procedures and reduction of the initial 
separation would result in better agreement between 
theoretical and experimental values. 

It should be pointed out, incidentally, that while the 
experiments were carried out with ingenuity and care, the 
possibility that their results were in error even for the 
small initial separations cannot be excluded. I n  both 
sets of experiments streams of drops were introduced 
rather than isolated pairs, and the behavior of each drop 
was influenced by all the others. Other disturbing factors, 
such as turbulence and wall effects, could have entered 
also. However, our premise was that the experimental 
results mere probably correct, and me sought to improve 
the method of computation to  minimize the errors intro- 
duced thereby. 

2. METHOD OF COMPUTATION 

The collision efficiency is defined by considering a cloud 
of drops of radius a through which a larger drop of radius 
A is falling. If the a drops were not deflected by the 
motion of the air around t,he A drop, aJl the a drops with 
centers within a distance a f i l  of the vertical downward 
through the center of the A drop mould collide with it. 
Because the drops are deflected, only those within a 
distance 12 from the vertical actually collide. The ratio of 
the drops that would actually collide to those that would 
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be expected from geometric considerations to collide is the 
collision efficiency E. Thus 

Alternatively the collision efficiency is sometimes given 
as E'= RZ/A2. 

It is convenient to let a/A=p and define a linear collision 
ejjicienc y 

Then 
ye= RIA. ( 2 )  

E=y2,l(1 +PI2 1 
E'=g f (3) 

The cases under discussion are those for which p = 1. 
The original computations could be carried out only for 
p slightly greater than 0.9. The velocities of the drops 
were too nearly equal for larger p values to permit 
completion of the relative trajectories. 

The computational program has been refined subse- 
quently in connection with experimental tests of the 
basic inethod of computing the collision efficiencies. The 
essen tin1 physical background of the computation of the 
trajectories  vas riot changed, but the integration procedure 
was made more efficient and a new method of cutting and 
testing the time steps was introduced in order to limit 
the total error. To save machine time on the IBM 7094 
some of the subroutines for computation of the trajectories 
of the drops were expressed in machine language instead 
of Fortran. A criterion for the required accuracy of each 
time step :is a fraction of the total time of overtake was 
developed in order to  limit to 0.01 il the total error of 
positions a t  the time the A drop caught up with the a 
drop. Every sixth time step until the drops were 10 A 
apart, and then every second time step the computation 
was repeated using two one-half sized time steps, and if 
the difference exceeded the criterion the time step wab 
halved and the process repeated. By this method it is 
estimated that the finite difference computation contrib- 
uted no more than 2 percent to the error in y,. 

For details of the approximations made in computing 
the trajectories and evaluating yc the reader is referred to 
the aforementioned publications of Shafrir and Neiburger. 
Briefly, each drop was treated as acted on  jointly by 
gravity and by the drag force which i t  mould experience if 
the air were moving with the velocity the other drop would 
induce a t  its center in its absence. This procedure was used 
by Pearcey and Hill [3], but whereas they used solutions to 
Oseen's linearized equations to obtain the fluid velocity 
n-e used esnct numerical solutions to the complete non- 
linear equations. 

3. RESULTS. 

The refined computations ere carried out for the dro]) 
sizes previously used t~nd for 0.8 I p <  1.0. The cornput:L- 
tions could nol be carried out for exactly equal drops. 

2 30 

2 2 0  

2 10 

2 0 0  

I 9 0  

0 
A 

1 8 0  

I 7 0  

I 6 0  

I 5 0  

I 4 0  

0 

13 

FIGUIZE 1 .-Curvcs rcprcsciitiiig tlic linear collisioii efficiency y c  as 
a fuiictioii of thc ratio of drop radii p for various radii of thc 
larger drop. Tlic sloping straight line rcpresciits the gcomctricnl 
liiienr collisioii efficiciicy yc= l f p .  Thc labcls on the right ciid 
of each curvc givc thc largc radius A t o  which it refcrs. 

Figure 1 shows the results for A=60p,  62p, 64p, 8Op, 
11Op, and 136p. 

For the 60-p and 6 2 - p  drops the collision efficiency 
dropped as p approached unity, as i t  had in the results of 
the earlier computations. However for the larger drops, 
beginning with 64p the linear collision efficiency has a 
minimum a t  :L value of p greater than 0.85 and then in- 
creases for larger values of 21. For A > S O p  the computed 
yc values for the largest p exceeded the geometric value, 
l f p .  It is reasonable to assume that as p approaches 
closer to unity, yc \\Todd increase still further. 

The value found experimentally by Telford et nl. for 
7 7 - p  drops (E'=12.6&3.4) corresponds to y,=3.5 *0.5. 
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For SO-p drops and p=0.975 the computed value was 1.99. 
While we have no basis for extrapolating the computed 
value to p=l.O, the slope of the last part of the 80-p 
curve as i t  is drawn in figure 1 would give n value at p= 1.0 
of 3.25. One can say. therefore, that the conqnited values 
are not inconsistent with Telford’s experinientd result. 

Table 1 gives the data from Woods’ experimental results 
pertinent to the computed values and the computed y. 
for the largest size ratio p for which the computation was 
carried out. 

The values for E found by Woods, and thus the yc 
values derived from them and shonn in the table, were 
based on the largest initial separation of groups of eight 
to 36 observations. They are thus lower bounds on these 
quantities. Woods states that “for a set of 20 observations 
there is an 88 percent probability that the tabulated 
values lie within 10 percent of those that would be given 
by an infinite set of observations.” Except for the 35- 
45-p group the experimental values seem fairly consistent 
with the computed values. In the 75-S5-p group the 
experimental value is slightly lower than the value com- 
puted for A=SO and p=O.98. A still higher value would 
be expected for computation with p= 1.0, but since 
in this group there were only eight experimental observa- 
tions the experimental result would be expected to be 
low. For the 65-75 group, experimental value is the same 
as computed for p=O.96-0.97, so that it too appears 
to be low; in this group there were 36 observations so 
that the discrepancy cannot be attributed to an insuf- 
ficient number of data. 

The 55-65-p group straddles the separation between 
the computed values which decrease as p approaches 
unity and those which increase. The computed and 
experimental values would be consistent if the instance 
of highest initial separation, on which the yc=l .S is 
based, involved collision of 64-p drops. Since few of the 
34 collisions in that group mould have been 64-p drops 
the fact that the experimental value for p = l  is less 
than the computed d n e  for p=0.97 is reasonable. 
However, Woods shoivs examples of collisions between 
equal 62-p drops, so that even if the comput a t’ ions are 
correct in showing the collision efficiency for 62-p drops 
decreasing for increasing p the experinients show that 
the value would not  be zero for p=l .  
1 IBLE I .--Coitipaiiso7i and experzniental und ~oir ip~i tc t l  collzszon 
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It is the 35-45-p group for which the computations 
are in complete disagreement with the experimental results. 
The computed values decrease with p increasing from 
0.8 to 0.9. Because velocity- fields for flow around spheres 
were not available for drops from 37- to 39-p radius com- 
putations could not be carried out for p>O.9, but it is 
logical to suppose that computed values of yc would 
cont,inue to decrease, perhaps to zero, as p approaches 
one. The experimental results could be consistent with 
the computations if among the 14 events in this experi- 
mental group some were between unequal drops for which 
p was as small as 0.8. Holyever, Woods states in his thesis 
t8hat the drops were closely equal, with the size varying 
not more than i x p .  

Woods states further that equal drops with A<35p 
were never observed to collide, and that the occasional 
collisions that occurred for 35-40-p radius drops were 
associated with turbulence in the ambient air. He con- 
cludes that the boundary between zero and large collision 
efficiency for equal drops is 40-p radius. The computa- 
tions indicate this separation to be a t  A=63p.  

One other experimental evidence is available on this 
point. Telford and Thorndike [7] carried out experiments 
in which nearly equal drops with diameter about 45p 
were observed to collide and coalesce, while smaller 
(35-p diameter) drops did not. These experiments would 
place the equal drop collision boundary a t  about A= 
20p, rather than Woods’A=40p or the computed A=63p. 

It may be mentioned, incidentally, that Telford and 
Thorndike considered that their observations “strongly 
support the theoretical treatment made by Hocking.” 
However, for collision of nearly equal drops Hocking’s 
computations predicted zero efficiency for 30-p radius 
as well as 20-p or smaller. It may be that they 
were thinking of Hocking’s conclusion that for A< 
19p the efficiency is zero for all values of p ,  but this mas 
not tested in their experiment. 

Penrcey and Hill’s computations gave collision effi- 
ciencies that increased with p ,  but they differ from the 
present computations in that very large collision effi- 
ciencies are predicted for nearly equal drops of all sizes, 
with the geometric efficiency exceeded even for 14-p 
radius drops. For larger radii they are extremely large. 
Table 2 gives some ralues estimated from their diagram. 
It is quite evident that Pearcey and Hill’s collision effi- 

14 
19 
31 
43 
i 3  

106 

1.4 
2.0 
3. 5 
4. 0 
ti. 9 
8. 5 

1. li 
2. 7 
4. 7 
7. 1 

10. 5 
14 

2. 6 
ti. 5 

14 
24 
41 
59 



920 MONTHLY WEATHER REVIEW Vol. 95, No. 1 2  

ciencies for nearly equal spheres are much larger than 
those suggested by the experiments, even those of Telford 
et al. [8]. 

4. CONCLUSIONS 
The refined computations shorn that nearly equal drops 

which are sufficiently large have large collision efficiencies. 
W-hile they exceed the geometric limit, they are not as 
large as those computed by Pearcey and Hill. The experi- 
mental results are consistent with the new computations 
except with respect to the limiting size between drops for 
which the efficiency decreases as equality is approached 
and those for which it increases. 

Whether Woods’ limit of 40-p radius or the computed 
limit of 63p  is correct, the implications with respect to 
formation of rain by the coalescence process is the same. 
Since condensation does not produce monodisperse clouds 
wit,h such large drops the high collision efficiency for 
equal drops of sizes larger than these would play no role 
in initiating precipitation. Normally there would be a 
spectrum of drop sizes and before the largest of them 
approached this size they would start colliding and 
coalescing with smaller drops for which they attain non- 
zero collision efficiencies earlier. Even when the drops 
exceed the size for which equal drops can collide it would 
remain a negligible factor in the rate of drop growth, for 
it is highly improbable that the drop immediately belo\\- a 
given drop would be approximately the same size. 
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